r编程书籍
A. 有哪些关于 R 语言的书值得推荐
数据挖掘与R语言
本书首先简要介绍了R软件的基础知识(安装、R数据结构、R编程、R的输入和输出等)。然后通过四个数据挖掘的实际案例 (藻类频率的预测、证券趋势预测和交易系统仿真、交易欺诈预测、微阵列数据分类)介绍数据挖掘技术。这四个案例基本覆盖了常见的数据挖掘技术,从无监督的 数据挖掘技术、有监督的数据挖掘技术到半监督的数据挖掘技术。全书以实际问题、解决方案和对解决方案的讨论为主线来组织内容,脉络清晰,并且各章自成体 系。读者可以从头至尾逐章学习,也可以根据自己的需要进行学习,找到自己实际问题的解决方案。
本书不需要读者具备R和数据挖掘的基础知识。不管是R初学者,还是熟练的R用户都能从书中找到对自己有用的内容。读者既可以把本书作为学习如何应用R的一本优秀教材,也可以作为数据挖掘的工具书。
机器学习:实用案例解析
机器学习是计算机科学和人工智能中非常重要的一个研究领域,近年来,机器学习不但在计算机科学的众多领域中大显身手,而且成为一些交叉学科的重要支撑技 术。本书比较全面系统地介绍了机器学习的方法和技术,不仅详细阐述了许多经典的学习方法,还讨论了一些有生命力的新理论、新方法。
全书案例既有分类问题,也有回归问题;既包 含监督学习,也涵盖无监督学习。本书讨论的案例从分类讲到回归,然后讨论了聚类、降维、最优化问题等。这些案例包括分类:垃圾邮件识别,排序:智能收件 箱,回归模型:预测网页访问量,正则化:文本回归,最优化:密码破解,无监督学习:构建股票市场指数,空间相似度:用投票记录对美国参议员聚类,推荐系 统:给用户推荐R语言包,社交网络分析:在Twitter上感兴趣的人,模型比较:给你的问题找到最佳算法。各章对原理的叙述力求概念清晰、表达准确,突 出理论联系实际,富有启发性,易于理解。在探索这些案例的过程中用到的基本工具就是R统计编程语言。R语言非常适合用于机器学习的案例研究,因为它是一种 用于数据分析的高水平、功能性脚本语言。
R语言经典实例
本书涵盖200多个R语言实用方法,可以帮助读者快速而有效地使用R进行数据分析。R语言给我们提供了统计分析酣一切工具,但是R本身的结 构可能有些难于掌握。本书提供的这些面向任务、简明的R语言方法包含了从基本的分析任务到输入和输出、常用统计分析、绘图、线性回归等内容,它们可以让你 马上应用R高效地工作。
每一个R语言方法都专注于一个特定的问题,随后的讨论则对问题的解决方案给出解释,并阐释该方法的工作机理。对于R的初级用户,《R语言经典实例》将帮助 你步入R的殿堂;对于R的资深用户,本书将加深你对R的理解并拓展你的视野。通过本书,你可以使你的分析工作顺利完成并学习更多R语言知识。本书由蒂特 著。
R语言编程艺术
R语言是世界上最流行的用于数据处理和统 计分析的脚本语言。考古学家用它来跟踪古代文明的传播,医药公司用它来探索哪种药物更安全、更有效,精算师用它评估金融风险以保证市场的平稳运行。总之, 在大数据时代,统计数据、分析数据都离不开计算机软件的支持,在这方面R语言尤其出色。
本书将带领你踏上R语言软件开发之旅,从最 基本的数据类型和数据结构开始,到闭包、递归和匿名函数等高级主题,由浅入深,讲解细腻,读者完全不需要统计学的知识,甚至不需要编程基础。而书中提到的 很多高级编程技巧,都是作者多年编程经验的总结,对有经验的开发者也大有裨益。本书精选了44个扩展案例,这些案例都源自于作者亲身参与过的咨询项目,都 是与数据分析相关的,生动展示了R语言在统计学中的高效应用。
金融数据分析导论:基于R语言
本书由统计学领域著名专家Ruey S. Tsay(蔡瑞胸)所著,从基本的金融数据出发,讨论了这些数据的汇总统计和相关的可视化方法,之后分别介绍了商业、金融和经济领域中的基本时间序列分析和计量经济模型。
时间序列分析及应用:R语言(原书第2版)
本书以易于理解的方式讲述了时间序列模型及其应用,主要内容包括:趋势、平稳时间序列模型、非平稳时间序列模 型、模型识别、参数估计、模型诊断、预测、季节模型、时间序列回归模型、异方差时间序列模型、谱分析入门、谱估计、门限模型.对所有的思想和方法,都用真 实数据集和模拟数据集进行了说明。
本书可作为高等院校统计、经济、商科、工程及定量社会科学等专业学生的教材或教学参考书,同时也可供相关技术人员使用。
B. python三本经典书籍都是什么
python三本经典书籍有:《深度学习入门:基于Python的理论与实现》,《Python高性能(第2版)》,《Python科学计算最佳实践:SciPy指南》。
1、《深度学习入门:基于Python的理论与实现》
本书深入浅出地剖析了深度学习的原理和相关技术,使用Python3,尽量不依赖外部库或工具,从基本的数学知识出发,带领读者从零创建一个经典的深度学习网络,使读者在此过程中逐步理解深度学习。
本书结合大量代码实例,详尽展示了SciPy的强大科学计算能力,包括用NumPy和SciPy进行分位数标准化,用Ndimage实现图像区域网络、频率与快速傅里叶变换,用稀疏坐标矩阵实现列联表、SciPy中的线性代数、SciPy中的函数优化等。
Python标准库的主要功能有:
文本处理,包含文本格式化、正则表达式匹配、文本差异计算与合并、Unicode支持,二进制数据处理等功能。
文件处理,包含文件操作、创建临时文件、文件压缩与归档、操作配置文件等功能。
操作系统功能,包含线程与进程支持、IO复用、日期与时间处理、调用系统函数、写日记(logging)等功能。
C. 入门r语言,r语言编程艺术和r语言实战最好先看哪一本
当然是先看比较入门的书,对R语言有个大概的了解,并且稍微操作一下。
再看r语言实战,内容比较全面,包括很多例子,不懂再参考一下并实际操作。看完这本书你就学得差不多了。
最后看r语言编程艺术,内容比较深入,涉及一些底层的东西和一些初学者不太用的东西。比如怎么用代码进行调试等。