A. 部队士官学校有哪些专业

理工大学气象观测、雷达仪器专业,特种作战学院保密档案专业,重庆通信学院卫星、接力通信专业,西安通信学院光纤通信、网络安全、信息系统管理与维护、

数据通信专业,陆军航空兵学院航空通信与导航设备维修专业,艺术学院文化影视管理专业,襄阳士官学校军队财务专业,白求恩医务士官学校护理等专业。

(1)光纤通信兵扩展阅读

报名程序

按照个人报名、基层推荐(优先推荐专业技术熟练、组织管理能力强的班长、副班长、获全军士官优秀人才奖和荣获三等功以上奖励的优秀士兵)、

文化测试、军事考核、思想考察、体格检查、组织审批的程序选拔考生,并填写《士官学员考生登记表》,团级单位负责。个人不申请、基层不推荐、思想考察不合格,或受到记过以上处分的不得报考;体检不合格者不得参加考试。

文化统考的内容:

报考中等职业技术教育(含任职技能培训)的文化科目为语文、数学、政治、物理4门,各科满分均为100分。报考高等职业技术教育的文化科目为语文、数学、英语、综合4门,考试总成绩满分为600分;其中,高技能人才培养班的文化科目为大学语文、科学知识综合、军政基础综合、大学英语。

B. 军事技术的简介

军事技术
军事技术是军事科学的重要组成部分,是构成 军队战斗力,决定战争胜负的重要因素,也是衡量国家军事实力的重要标志之一。军事技术的发展,受军事思想和战略、战术的指导,同时也对军事思想、战略、战术乃至军队建设产生重大影响。军事需要是推动军事技术发展的动力。
军事技术的发展归根结底取决于国家的经济状况和科学技术的发展水平,即受生产力的制约。科学技术的最新成就往往优先运用于军事,引起军事技术的变革;而军事技术的发展,又在一定程度上促进科学技术的发展。
军事技术是建设武装力量、巩固国防、进行战争和遏制战争的重要物质基础,是构成军队战斗力的重要因素。它主要包括:各种武器装备及其研制、生产所涉及的技术基础理论与基础技术;发挥武器装备效能的运用技术以及军事工程和军事系统工程等。武器装备是军事技术的主体,是军事技术发展水平的集中体现。现代军事技术可以按武器装备的种类来区分:如轻武器、火炮、坦克、弹药、军用飞机、舰艇、导弹、核武器、化学武器、生物武器、三防装备、军用雷达、军用光学仪器、军用通信装备、电子对抗装备以及军队指挥自动化系统等;也可以按应用于不同的军种、兵种领域来区分:如海军技术、空军技术、战略导弹部队技术、炮兵防空兵技术、装甲兵技术等。 在现代战争中,军事通信的中枢神经作用显得格外突出。而在现代电子技术、计算机技术、航天技术等高技术基础上发展起来的现代通信技术,则为现代军事通信提供了更加有效的通信工具和更完善的通信手段。毋庸置疑,军事通信技术在战后得到了相当大的发展。
让我们来看看这些具有代表性的现代通信技术:
载波通信
二战以后,军事有线通信技术取得了包括60年代产生的程控交换技术在内的一系列重大进步,其中比较突出的是载波通信与光纤通信技术。
载波通信就是利用频率分割原理,在一对线路上同时传输多路电话的通信。其工作原理是:在发信端把各路电话信号分别对不同的载波频率进行调制,将各话路的频谱安排在各自不同的频位上。在接收端,则进行相反的解调过程,把位于不同频位的各话路还原为话音频谱,实现载波多路通信。载波通信除了传输电话信号外,还可以进行二次复用,即利用载波话路来传输电报、传真、数据等等。载波通信有效的利用了有线通信的线路,扩大了信道的容量,提高了传输的速度。在军事信息量不断增加、军事通信要求高效迅速的情况下,载波通信是一种极好的技术手段。载波通信技术产生于20世纪初期,电子管和滤波器发明以后,为实现载波电话通信创造了技术条件。同时,增音器和同轴电缆的发明又为载波通信的发展插上了翅膀。1918年,在美国的匹茨堡到巴尔的线路上开通了第一个载波电话通信系统,每对线通3路电话。到1938年,经过不断改进,可通12路电话。在两次世界大战中,由于战争条件的限制,各参战国(除美国外)的长途有线通信发展很慢。第二次世界大战结束初期,各国均建立了规模巨大的军用长途载波通信系统,通信容量从最初的每对线几路、十几路,发展到几十路、几百路。20世纪60年代初,载波通信设备进入了半导体化阶段。20世纪50年代初,单晶硅制备技术得到了突破性的发展,60年代各种晶体管电子元件相继诞生。半导体晶体管的诞生是电子元件的第二次重大突破,它具有体积小、重量轻、耐震、寿命长、性能可靠、功耗低等电子管无法比拟的优点,有效地促进了电子技术的发展。载波通信的半导体化进一步促进了军事载波技术的发展。到70年代,随着半导体技术的进一步发展和同轴电缆材料与性能的提高,10800路载波电话系统在一些国家的军队中先后投入使用。
光纤通信
光纤通信是以激光作载体,以光纤维做媒介来实行信息传输的一种新型通信方式。1960年美国科学家梅曼用红宝石制成了世界上第一台激光器,激光技术由此问世。其基本工作原理是,通过从外部对某些物质施加能量,使电子急剧增能,在外来光的激发下,以光子形式经过光学谐振腔的特殊装置,等到聚能放大而发射出来。激光具有很好的相干性、单色性和方向性,可在大气空间、宇宙空间、光波导、光导纤维以及海水中传输,故能作为信号载波应用于通信。由于激光的光束很细、方向性极好,人眼又看不见,因此用激光进行通信具有极好的保密性。不易被敌人截获和干扰,且不受热核辐射的影响。激光技术的产生,为光纤通信创造了技术条件。1955年,英国伦敦大学的卡佩奈在其博士论文中提出了纤维光学技术的基础理论。1970年,廷德尔首次表演了沿电解质管进行光的传输。光通信原理的提出和对于光纤维的研究,激发了人们对利用光纤维进行通信的兴趣。但是要使它真正实现还要有赖于激光技术的成熟、光纤维的制备和光电调制技术。1970年,格拉斯研制成20db/km低衰减的纤维,这是光纤通信的一项重大突破。1971年,日本电星公司生产出一种具有分散折射指数的纤维。1976年,在美国芝加哥展示了试验性光波传输系统(利用玻璃光波导传送由超小型固体激光器和发光二极管发出的光脉冲信息)。1977年,美国及其他国家的一些电话公司建立了实验性的光导纤维系统。80年代以后,光纤通信以逐渐渗透到陆、海、空乃至空间武器装备系统中,成为现代军事通信的重要手段。世界各国军队纷纷以光纤代替原先的金属电缆,美空军后勤司令部已在所有空军基地建立了据称是迄今世界上同类网络中最大的光纤通信网络——“军事基地光纤通信系统”。随着光纤通信技术的发展,光纤通信在现代军事通信中的应用将更加广泛。
散射通信
第二次世界大战以后,军事无线通信技术也获得了巨大发展,出现了散射通信、无线激光通信、红外通信、移动通信、卫星通信等新的通信形式。
散射通信是利用空中传播煤质的不均匀性对电磁波的反射作用进行的超视距通信。大气层中的对流层、电离层和流星余迹等,都具有对入射的电磁波再向多方向辐射的特性。利用这些煤质将视距传播的电磁波传送到视距以外,即可进行远距离通信。对流层散射通信即用对流层对超短波或微波的反射作用来实施超视距通信。军用对流层散射通信有固定式和移动式。流星余迹通信则是利用流行穿过大气层高速运动造成的短暂电离痕迹对无线电波的反射或散射作用进行远距离瞬间通信。流星余迹通信传输受核爆炸及太阳耀斑的影响较小,电波反射的方向性强,隐蔽性好,信号不易被截获,适用于远距离小容量的军事通信。第一条对流层散射通信线路于1955年在美国建立,全长2600公里。中国于50年代中期开始研究,于60年代初研制出对流层散射通信设备。在军事通信中,由于散射通信比短波无线电通信稳定,并可多路传输,比起微波、超短波接力通信来可以不建或少建中间转接站,而且不受高山、海峡、海港等天然障碍地带和被敌占区阻隔的限制,所以在第二次世界大战以后许多国家都大力进行研究开发,用于军事战略通信和战术通信。
20世纪60年代以后,随着激光技术与微电子技术的发展,军事无线通信中出现了大气激光通信和红外线通信。大气激光通信是利用大气空间作为激光信号的传输媒介来实现信息传递的。发信时,将传送的信号经信息终端、光调制器及激光器转换为激光信号,然后经光学发射天线将激光信号发射出去,通过大气空间传送到对方;收信时,光学接受天线将激光信号接受下来送至光检测器,转换成电信号到信息终端,信息终端再将电信号转换为原来的话音或图像等信息。大气激光通信的优点是通信容量大,不受电磁干扰,保密性强,设备轻便。但通信距离较近,可靠性较差,且需要比较精密的设备,所以在军事通信中一般最为辅助通信手段,用于边防哨所、海岛之间以及跨越江河峡谷等近距离定点通信。红外线通信则是利用红外线传输信息的一种光通信方式,红外线是一种能在大气空间作直线传输但不能为人眼所觉察的电磁波。红外线通信的优点是:红外线沿一条直线传播,方向性强,不易被敌发现,保密性好,不受天电和其他电磁波的影响,抗干扰性能强,设备简单,造价低廉。主要缺点是受地形、天候和烟尘等影响较大,并且只能在直视距离以内使用,在军事上大多用于战术通信。
卫星通信
二战以后,军事无线通信技术取得的最大成果是军事卫星通信技术的产生和发展。1945年,美国的克拉克提出了用卫星进行通信的设想。1946年,曾有人用雷达向月球发射微波信号,结果准确的收到了从月面反射的回波,从理论上证明了利用卫星进行无线电通信的可行性。1957年,苏联第一课人造地球卫星发射成功,为卫星通信技术的产生和发展铺平了道路。1958年,美国发射了世界上第一个试验性的有源通信卫星。1960年,美国的皮尔斯等人首次实现了用人造地球卫星Echo-I作无线电反射器,Echo-I是一颗无源通信卫星,靠反射电波来完成通信。由于入射波的能量得不到补充,反而消耗在卫星到地球的路程中,所以地面接收到的信号是很微弱的,只有经过放大才能达到有效通信。经过两年的努力,到1962年利用Echo-I进行北美与欧洲的通信获得了成功。1962年,美国发射了第一个有源通信卫星Telstar。有源通信卫星装有接收机和发射机,可接收和发送信号。通过Telstar通信卫星实现了横跨大西洋的电视和电话传输。
卫星通信技术产生以后,立即便用于军事目的。20世纪60年代初,美国军方委托伍德里奇公司研制出“国防通信卫星”并投入使用,成为为美国国防部各部门提供通信线路和直接支援全球军事通信与指挥的系统。1971年至1989年底,美国又发射了16颗更为先进的“国防通信卫星III”。与此同时,美国还发展了各军兵种使用的通信卫星。1978年至80年代末期,美国发射了8颗由TRW公司研制的舰队通信卫星。该系统由美国海军负责管理,约800艘舰船、100艘潜艇和空军的数百架飞机和一些地面终端使用。1976年,美国开始部署空军通信卫星系统,1979年投入使用,1981年开始全面工作,系统连接包括预警机、侦察机、战略轰炸机、洲际导弹指挥所在内的地面和机上终端。90年代以后,美国还研制和发射了具有较强抗核加固的抗干扰能力,能保证和战争条件下通信顺畅的新一代军用通信卫星战略战术和中继卫星(MILSTAR)。除了美国之外,其他国家和国际军事组织也大力发展军事卫星通信技术。北约组织于70年代初发射了3颗“纳托”通信卫星;法国于1984年和1985年分别把“电信-1A”、“电信-2B”发射到地球同步轨道;英国于1969年、1970年、1974年和1988年分别发射了“天网-1”、“天网-2”、“天网-4”军用通信卫星;苏军于1965年发射了“闪电-1”、军事通信卫星74颗,70年代后又发射了改进的“闪电-2”、“闪电-3”卫星近50颗;中国于60年代发射“东方红”地球卫星后,也发展了军事卫星通信。利用人造地球卫星进行军事通信具有通信距离远、传输容量大、可靠性高、灵活性强和造价便宜等优点,成为当代军事通信的理想形式。
第二次世界大战以后,在军用无线电通信技术方面,还发展了自动转接的移动通信技术。移动通信即通信双方或一方处于运动状态中,以移动电台通过固定通信台转接进行的通信联络。用于移动通信的主要设备是各种便携式、车载式、船载式的超短波电台和短波电台。通过地面无线电设备与有线电话交换中心连接,移动电话还可与近距离或远距离的有线电话通信。人们早就希望有一种便携的能“自由”通话的工具。20世纪30年代出现了体积小、重量轻的电子管步谈机,采用单工无线电话的工作方式。尽管步话机技术后来有了发展,但由于发射功率小,传输的距离近,而且采用单工方式,送花的同时不能听话,使用不够方便。60年代以后,随着微电子技术和程控交换技术的发展,小型的电台能发射较大功率的信号,固定通信台站可以通过程控交换机接转覆盖区内的任何一个用户。于是移动通信技术迅速地发展起来。移动通信机动灵活,方便迅速,便于军队在机动中及时实施作战指挥,使海陆空军各部队在复杂情况下能够密切配合协同作战,对保障现代条件下的作战具有重要作用。
技术发展
军用野战电台作为军事通信中特有的通信设备在第二次世界大战以后得到了迅速发展。20世纪50年代,军用野战电台的单边带技术得到了普遍的应用和发展。所谓单边带通信就是发送和接受调幅信号的两个边带中的一个边带信号的无线电通信。单边带电台在传送话音信号时,话音信号和频率合成器产生的高稳定度的低载频信号,加载到发信机的高频信号上,经调制器的作用,产生上下两个载频,再经滤波器把某一边带滤掉,只让另一边带的信号加载到较高的工作频率上,并加以放大,送至天线发射出去。收信机将天线接收射频单边带信号搬回到较低的频率上,并加以放大,送人单边带解调器,在解调器中加入低载频信号,将原话音信号还原出来。单边带技术于1915年发明,1923年进行了横跨大西洋的通信试验,1933年以后为大多数远洋通信所采用。1954年,单边带电台在军用无线电通信系统中迅速发展,取代了普通的调幅电台。50年代,大多数国家特别是发达国家普遍使用了单边带战术电台,美军使用的单边带无线电台既有台式的,也有车载的,可通16路报、2路话、1路传真,功率为10千瓦。
20世纪60年代以后,随着半导体技术的产生和发展,军用野战电台由晶体管代替了电子管,并在70年代以后大量采用集成电路和大规模集成电路。军用野战电台向晶体管小型化发展,进一步缩小体积,减轻重量,提高了通信容量和可靠性。美军在50年代营连装备的电台是电子管式的AN/PRC-1型,60年代初装备了除末级外均为晶体管的AN/PRC-25型电台,60年代末装备了全晶体管的 AN/PRC-77型电台,70年代装备了微模组件式的AN/PRC-99型电台。经过更新换代,电台的信道数不断增加,信道间隔进一步缩短,通信距离得到扩展,重量随之减轻,集成化程度提高。美军在80年代初期研制成的产品集成化程度已达20%~40%,到80年代后期达到90%以上,发射功率在20千瓦量级,重量在4公斤左右,可靠性比同类电台提高10倍。
在采用晶体管、集成电路、大规模集成电路的同时,60~70年代的军用野战电台实现了多波段、多工种、多用途,以便于各兵种配合作战,减少机种,实现一机多用。80年代以后,各国军队野战电台的发展出现了两大趋势。一是由模拟制向模数兼容和全数字化过渡,运用了数字计算和数字处理技术。将数字技术引进通信设备是80年代军事通信技术出现的新动向。性能良好的数字电路逐步取代了传统的模拟电路,大量涌现的数字器件(数字混频器、数字频率合成器、数字滤波器、数字振荡器等)用于军事通信设备。一些发达国家在野战电台中逐步采用了微处理器。它是由一片或若干片大规模集成电路组成,包括技术逻辑部件、指令处理部件以及控制存储或运算的控制器,具有运算和控制功能。在数字处理技术和微型计算机技术发展的基础上,野战电台的保密技术也得到了发展,特别是采用信号压缩技术和数字加密技术,使无线通信信号被截获和破译的概率大大缩小。采用信号压缩技术发出的信号极其短暂,使人难以截获,即使截获了也难以破译。而数字保密技术可以把密钥数做的很大,使人难以破译。二是采用跳频技术等抗干扰技术。跳频技术就是收发双发电台的工作频率,按预定的顺序在一定的频率范围内作同步快速跳变。早期的无线电操作员采用一个时间表来使用工作频率,而跳频系列则是使用一个码序来决定在某一特定的时间应使用什么频率,工作频率每秒钟可跳变数十次、数百次或更多,跳变的频率范围可宽达数十兆赫。采用这种方式发射的信号,不易被敌方干扰,它是在军事通信中抗干扰的主要措施。德国于1981年研制出CHX200机动式和固定式高频跳频电台系统,1983年研制出SEM172甚高频跳频电台;美国于1982年研制出背负式AN/PRC-117型中频跳频电台;瑞典于1985年研制出甚高频跳频电台;英国也在80年代研制出150系列高频跳频电台,供该国和比利时等许多国家的军队装备。这些跳频电台大多数由微机进行控制,能自动搜索信道,自动变频,抗干扰和保密性能十分良好。

C. 光通信的历史

每当我们提到烽火台,就会自然而然地想到长城,实际上烽火台筑在长城沿线的险要处和交通要道上。一旦发现敌情,便立刻发出警报:白天点燃掺有狼粪的柴草,使浓烟直上云霄;夜里则燃烧加有硫磺和硝石的干柴,使火光通明,以传递紧急军情。上图为新疆呼图壁县境内的烽火台,在呼图壁县境内共有5个烽火台,其中3个已毁,烽火台长宽均约4米,高约5米,筑台年月不详。
烽火台通信,源于奴隶制国家在政治和军事方面对通信的需要。据历史记载,早在三千多年前,中国就有了利用烽火台通信的方法。关于烽火通信有个叫“千金买笑”的故事。故事是这样的,周朝有个周幽王,这是一个非常残暴而腐败的君主,他有个爱妃名叫褒姒,长得非常美丽,《东周列国志》中有这样一段话来形容褒姒:“目秀眉清,唇红齿白,发挽乌云,指排削玉,有如花如月之容,倾国倾城之貌。”褒妃虽然很美,但是“从未开颜一笑”。为此,周幽王使出了一个赏格:“谁要能叫娘娘一笑,就赏他一千斤金子”(当时把铜叫金子)。于是有人想出了一个点起烽火戏诸侯的办法,想换取娘娘一笑,一天傍晚,周幽王带着爱妃褒姒登上城楼,命令四下点起烽火。临近的诸侯看到了烽火,以为西戎(当时西方的一个部族)来犯,便领兵赶到城下救援,但见灯火辉煌,鼓乐喧天。一打听才知是周幽王为了取乐于娘娘而干的荒唐事儿,各诸侯敢怒不敢言,只好气愤地收兵回营。褒姒见状,果然淡然一笑。但事隔不久,西戎果真来犯,虽然点起了烽火,却无援兵赶到。原来各诸侯以为周幽王又是故伎重演。结果都城被西戎攻下,周幽王也被杀死了,从此西周灭亡了。
至今仍相传的“千金买笑”的故事就是从这儿来的。后来,又有人写了首诗,讽刺“烽火戏诸侯”之事,诗是这样的:
良夜颐宫奏管簧,无端烽火烛穹苍。
可怜列国奔驰苦,止博褒妃笑一场!
这个历史故事不仅生动的描绘了当时利用烽火台通信的情况,同时也告戒后人,通信是非常重要的,不论在什么时候也不论是什么人,都不能拿通信当儿戏。 17世纪中叶,人们发明了望远镜,它使得人们可以看得更远了。到1791年,法国人发明了灯信号,此后“灯语”通信在欧洲风靡一时。直到今天,信号灯、旗语、望远镜等目视光通信的手段仍在使用,但是这一切还是最原始的光通信,不能算作是真正的光通信。不过,这些原始的光通信由于方便、可靠至今仍在使用,所以还是有必要了解的,让我们认识一下望远镜吧。
望远镜的作用首先是能够放大远方物体的张角,人眼的分辨角大约是1分(1分是1度的六十分之一),而望远镜能使人眼能看清角距更小的细节,其次,望远镜能将光线集中起来,使人眼看到本看不到的暗弱物体发出的光线。望远镜由物镜和目镜两组镜头及其他配件组成。为了减小望远镜的像差,物镜和目镜通常由多个元件组成。望远镜所能收集的最大的光束直径,称为口径。所能观测到的范围称为视场,通常以角度来表示。视场大小和目镜的结构有关,对于同样的目镜视场直径与放大倍数成反比:放大率越高,视场越小。
中国目前最大的光学望远镜是2.16米。茫茫宇宙,繁星似沙,但今后10年,人类为天体光谱作的“户口登记”数,将超过以往数百年。因为,人类有了新的“千里眼”———大天区面积多目标光纤光谱天文望远镜,该望远镜于2004年建成,安放在北京兴隆县燕山山脉中兴隆观测站,届时,将大大提升中国天文学研究的国际地位,使中国恒星和星系的光谱观测达到国际领先水平。
大天区面积多目标光纤光谱天文望远镜(LAMOST)是国际上视场和口径最大的天文望远镜,长50米、高30米,视场为5度,口径达4米,一次观测可达20平方度(整个宇宙空间约有4万平方度)。通过大天区面积多目标光纤光谱天文望远镜,在21世纪前10年,人类就可测出天体光谱100万个。
目前世界上最大的望远镜是位于夏威夷的凯克望远镜,直径10米,由36面1.8米的六角型镜面拼合而成,耗资一亿三千万美元,主要是由美国的一个企业家凯克捐助修建的,第一面凯克望远镜建造成功后,凯克基金会又投资修建了凯克二号望远镜,两座望远镜挨在一起,威力无比;另外的大型望远镜有美国国立天文台位于南北两半球的两个八米望远镜,一座位于夏威夷,一座位于智利,合称双子座望远镜;日本人在夏威夷建造了一座八米的称为昴星团望远镜;下世纪欧洲南方天文台将建成四座八米望远镜,组合口径相当于15米!
目前世界上最大的射电望远镜是波多黎各的阿雷西沃无线探测仪,它是我们安放在宇宙间的最大的无线电耳朵。该望远镜上的巨大的反向镜的直径为305米。阿雷西沃探测仪被用来搜寻空中的由外星智能生命发射来的信号,如果你看过电影《黄金眼》(英美合拍,1995)及《接触》(美国,1997),就一定不会对它陌生。 虽然人类社会的文明程度和科学技术得到了很大的提高,但是简单的利用光传递信息的方式仍然在广泛使用,例如红黄绿交通信号灯,旗语,电灯发明之后,又有了利用百叶窗和灯光的灯语。让我们认识一下旗语。
旗语产生于西方的大航海时代,舰船之间通过旗语来进行联络;直到现在,各种信号旗仍然在船舶上悬挂。在F1的赛车场也使用到了旗语,可以说它也是一种目视光通信的手段。如果你能向F-1赛手像是塞纳、舒马赫、威伦纽夫等高手侃侃有关F1旗语的话题,一定能让他们刮目相看。
了解F1的旗语吧:
白色旗表示跑道上有缓慢移动的车辆
红色旗表示比赛已停止
黑色旗表示指定的赛车下次通过修理站时要停车
黄底红道旗意思是告诉车手跑道较滑
黑白对角旗表示是非运动员行为
黄旗表示有危险
黑白格相间的旗子意思是比赛结束
蓝旗表示有车手正要超车
黑底黄色圆心旗表示赛车有故障
绿色旗表示全程畅通
不论是烽火台、望远镜,还是交通红绿灯、旗语,它们都是光通信的不同形式,但是它们有一个共同点,就是利用大气来传播可见光,由人眼来接收。也正因为如此,我们才会对它们如此地熟悉,可是这些却不是真正的意义上的光通信,更不是强大的光通信,真正强大的光通信应该是光纤通信。在这里,应该明确,光通信指的是一切运用光作为载体而传送信息的所有通信方式的总称,而不管传输所使用的媒质是什么;而光纤通信则是单纯地依靠光纤作为媒质来传送信息的通信方式。
尽管人类很早就认识到用光可以传递信息,比如3000多年前中国就有了用光传递远距离信息的设施——烽火台;但是,其后的很多年中,光通信几乎没有什么发展;后来又有了用灯光闪烁、旗语等传递信息的方法;但是这些都是用可见光进行的视觉通信,是非常原始的光通信方式,不能称得上是完全意义上的光通信。
近100年中,人们仍然没有对光通信失去兴致,就连大发明家贝尔(BELL)也尝试着用光来打电话,这被认为是近代光通信的开始。20世纪60年代后,随着人们对通信的要求变得越来越强烈,光通信获得了突飞猛进的发展。我们今天所说的光通信已不再是用可见光进行的视觉通信,而是采用光波作为载波来传递信息的通信方式了。现代人类已经进入了信息社会,光通信的魅力也逐步地展现在人们的面前。 光通信的出现比无线电通信还早。波波夫发送与接收第一封无线电报是在1896年,以发明电话而著名的贝尔,在1876年发明了电话之后,就想到利用光来通电话的问题。1880年,他利用太阳光作光源,大气为传输媒质,用硒晶体作为光接收器件,成功地进行了光电话的实验,通话距离最远达到了213米。1881年,贝尔宣读了题为《关于利用光线进行声音的产生与复制》的论文,报导了他的光电话装置。在贝尔本人看来:在他的所有发明中,光电话是最伟大的发明。
贝尔用弧光灯或者太阳光作为光源,光束通过透镜聚焦在话筒的震动片上。当人对着话筒讲话时,震动片随着话音震动而使反射光的强弱随着话音的强弱作相应的变化,从而使话音信息“承载”在光波上(这个过程叫调制)。在接收端,装有一个抛物面接收镜,它把经过大气传送过来的载有话音信息的光波反射到硅光电池上,硅光电池将光能转换成电流(这个过程叫解调)。电流送到听筒,就可以听到从发送端送过来的声音了。
利用光在大气中传送信息方便简单,所以人们开始研究的光通信都是这种方式。但是光在大气中的传送要受到气象条件的很大限制,比如在遇到下雨、下雪、阴天、下雾等情况,就会看不远和看不清,这叫做大气的能见度降低,使信号传输受到很大阻碍。此外,太阳光、灯光等普通的可见光源,都不适合作为通信的光源,因为从通信技术上看,这些光都是带有“噪声”的光。也就是说,这些光的频率不稳定、不单一,光的性质也很复杂;一句话,就是光不纯。因此,真要用光来通信,必须要解决两个最根本的问题:一是必须有稳定的、低损耗的传输媒质(可不能再用空气了哟!);另一个问题是必须要找到高强度的、可靠的光源。在此后的几十年中,由于这两项关键技术没有得到解决,光通信就一直裹足不前。也正因此,贝尔的光话始终没有走上实用化的阶段。所以我们今天也没有用上贝尔的光电话,而只是用了他发明的电话;但不管怎样,贝尔真的是一位伟大的发明家,我们应该记住他的名字。 1870年,英国物理学家廷德尔在实验中观察到,把光照射到盛水的容器内,从出水口向外倒水时,光线也沿着水流传播,出现弯曲现象,这好象不符合光只能直线传播的定律。实际上,这时光仍是沿直线传播,只不过在水流中出现了光反射现象,因而光是以折线方式前进的。光也可以“走弯路”。
廷德尔观察到的现象,直至1955年才得到实际应用。当时在英国伦敦英国学院工作的卡帕尼博士,发明了用极细的玻璃制做的光导纤维。每根细如丝的光导纤维是用两种对光的折射率不同的玻璃制成,一种玻璃形成中央中心束线,另一种包在中心束线外面形成包层。由于两种玻璃在光学性质上的差别,光线经一定角度从光导纤维的一端射入后,不会从纤维壁逸出,而是沿两层玻璃的界面连续反射前进,从另一端射出。最初,这种光导纤维只是应用在医学上,用光纤束组成内窥镜,可以观察人体肠胃内的疾病,协助医生及时作出确切的判断。
其实,现代的光纤通信也就是运用光反射原理,把光的全反射限制在光纤内部,用光信号取代传统通信方式中的电信号,从而实现信息的传递的。

D. 光纤通讯士兵是干什么的我是一名解放军占士我想报老士官,想知道光纤通讯士兵江来做什么

应该是搞网络的,技术岗位,如果技术牛的话,在部队还是很有前途的。

E. 通信兵的中国通信兵

新中国成立后,中国通信兵进入到一个崭新的发展时期。在百废待兴之中、日理万机之时,党中央、毛泽东依然十分重视通信兵的建设。1950年5月,根据中央军委和毛泽东的命令,中央人民政府人民革命军事委员会正式成立通信部(简称军委通信部),并任命王诤为部长。1956年 4月13日,中央军委决定成立中国人民解放军通信兵部,行使兵种领导机构的职权,王诤任通信兵主任,朱明任任通信兵政委。此后,通信兵部隶属关系虽几经变化(1959年3月,国防部决定将解放军通信兵部改称总参谋部通信兵部,仍行使兵种领导机关职权。1961年2月,中央军委决定将总参谋部通信兵部改称解放军通信兵部。1975年3月又改称总参谋部通信部),但将通信兵作为一个兵种,大力加强现代化建设这一点却始终没变。
经过几十年的努力和发展,人民通信兵在向通信现代化进军途中取得了丰硕成果。
从50年代起,通信兵相继进行了大规模的永备通信线路建设,并建成了以架空明线和较大功率短波双边带电台为主、沟通全国29个省、市、自治区的通信网。60年代末至70年代,又一举建成了连通27个省、市、自治区的地下电缆通信网,安装了大通路载波设备,大大提高了全军通信网络的容量和稳定性、抗毁性、灵活性及保密性。与此同时,在长途地下电缆网初步建成的基础上,解放军有线电通信开始按战区设置信息交换中心,并在无线电通信中普遍使用了单边带收发信设备,发展了传真通信和数字保密接力通信,相继建成了全军长途电话自动交换网、电报数据自动交换网、数字保密电话自动交换网。同时,还建成了军队卫星通信系统、多路数字微波接力通信系统等等。 20世纪70年代末至80年代初,在加强各军兵种通信部队全面建设的同时,又对地下电缆网进行了完善配套和扩容改造,一批具有80年代先进水平的大通路载波设备、长途电话自动交换设备、程控电话交换设备、数字通信、卫星通信、散射通信以及光纤通信等设备相继投入使用,基本形成了以统帅部为中心,固定台站为骨干,固定设施与野战装备相结合,有线电与无线电相结合,多种手段并用的独立的国防通信网。1978年1月,军队指挥自动化建设开始起步。1987年12月,建成了全军军事信息传递与处理系统。在此基础上,逐步进入到整体联网开发应用阶段,应用软件水平不断提高,各类指挥系统开始向实用发展,不但融指挥、控制、情报、通信、电子对抗为一体,初步实现了作战信息采集、传递、处理的自动化,在边境作战、情报传输、公文传递、应付突发事件、保障军事演习和日常业务管理中发挥了重要作用,并为进一步加快发展,赶超国际先进水平,打下了良好基础。他们正以实际行动,为建设一支“政治合格、技术过硬、作风优良、纪律严明、保障有力”的通信兵而努力!