光纤与光通讯
1. 光通信技术与光纤通信技术讲的都是什么,一样吗
肯定不一样了。。
光纤用新技术就是以光纤为介质 光波为载体 通过折射率不同传播信息
光通信技术范围太广 但都是以光波为载体传播信息
望点赞
2. 光纤通讯和光纤通信有什么区别
光纤通讯是光导纤维传送信号的一种通讯手段。光纤通讯的特点是通讯容量大,比电通讯容量大千万倍,在两根光纤上可以传递万路电话,或上千路电视;保密性能好,抗干扰性很强。
光纤通信是以光波作为信息载体,以光纤作为传输媒介的一种通信方式。从原理上看,构成光纤通信的基本物质要素是光纤、光源和光检测器。光纤除了按制造工艺、材料组成以及光学特性进行分类外,在应用中,光纤常按用途进行分类,可分为通信用光纤和传感用光纤。传输介质光纤又分为通用与专用两种,而功能器件光纤则指用于完成光波的放大、整形、分频、倍频、调制以及光振荡等功能的光纤,并常以某种功能器件的形式出现。
从它们只是讲的角度不同,光纤通讯主要讲的手段,光纤通信说的是技术方面的东西
3. 光纤通讯的光纤通讯
利用光纤做为通讯之用通常需经过下列几个步骤:
以发射器(transmitter)产生光讯号。
以光纤传递讯号,同时必须确保光讯号在光纤中不会衰减或是严重变形。
以接收器(receiver)接收光讯号,并且转换成电讯号。 光纤常被电话公司用于传递电话、因特网,或是有线电视的讯号,有时候利用一条光纤就可以同时传递上述的所有讯号。与传统的铜线相比,光纤的讯号衰减(attenuation)与遭受干扰(interference)的情形都改善很多,特别是长距离以及大量传输的使用场合中,光纤的优势更为明显。然而,在城市之间利用光纤的通讯基础建设(infrastructure)通常施工难度以及材料成本难以控制,完工后的系统维运复杂度与成本也居高不下。因此,早期光纤通讯系统多半应用在长途的通讯需求中,这样才能让光纤的优势彻底发挥,并且抑制住不断增加的成本。
从2000年光通讯(optical communication)市场崩溃后,光纤通讯的成本也不断下探,已经和铜缆为骨干的通讯系统不相上下。
对于光纤通讯产业而言,1990年光放大器(optical amplifier)正式进入商业市场的应用后,很多超长距离的光纤通讯才得以真正实现,例如越洋的海底电缆。到了2002年时,越洋海底电缆的总长已经超过250000公里,每秒能携带的资料量超过2.56Tb,而且根据电信业者的统计,这些数据从2002年后仍然不断的大幅成长中。 自古以来,人类对于长距离通讯的需求就不曾稍减。随着时间的前进,从烽火到电报,再到1940年第一条同轴电缆(coaxial cable)正式服役,这些通讯系统的复杂度与精细度也不断的进步。但是这些通讯方式各有其极限,使用电气讯号传递资讯虽然快速,但是传输距离会因为电气讯号容易衰减而需要大量的中继器(repeater);微波(microwave)通讯虽然可以使用空气做介质,可是也会受到载波频率(carrier frequency)的限制。到了二十世纪中叶,人们才了解使用光来传递资讯,能带来很多过去所没有的显著好处。
然而,当时并没有同调性高的发光源(coherent light source),也没有适合作为传递光讯号的介质,所以光通讯一直只是概念。直到1960年代,雷射(laser)的发明才解决了第一项难题。1970 年后康宁公司(Corning Glass Works)发展出高品质低衰减的光纤则是解决了第二项问题,此时讯号在光纤中传递的衰减量第一次低于光纤通讯之父高锟所提出的每公里衰减20分贝(20dB/km)关卡,证明了光纤作为通信介质的可能性。与此同时使用砷化镓(GaAs)作为材料的半导体雷射(semiconctor laser)也被发明出来,并且凭借体积小的优势而大量运用于光纤通讯系统中。1976年,第一条速率为44.7Mbit/s的光纤通信系统在美国亚特兰大的地下管道中诞生。
经过了五年的研发期,第一个商用的光纤通讯系统在1980年问市。这个人类史上第一个光纤通讯系统使用波长800纳米(nanometer)的砷化镓雷射作为光源,传输的速率(data rate)达到45Mb/s(bits per second),每10公里需要一个中继器增强讯号。
第二代的商用光纤通讯系统也在1980年后发展出来,使用波长1300纳米的磷砷化镓铟(InGaAsP)雷射。早期的光纤通讯系统虽然受到色散(dispersion)的问题而影响了讯号品质。但是1981年单模光纤(single-mode fiber)的发明克服了这个问题。到了1987年时,一个商用光纤通讯系统的传输速率已经高达1.7Gb/s,比第一个光纤通讯系统的速率快了将近四十倍之谱。同时传输的功率与讯号衰减的问题也有显著改善,间隔50公里才需要一个中继器增强讯号。1980年代末,EDFA的诞生,堪称光通信历史上的一个里程碑似的事件,它使光纤通信可直接进行光中继,使长距离高速传输成为可能,并促使了DWDM的诞生。
第三代的光纤通讯系统改用波长1550纳米的雷射做光源,而且讯号的衰减已经低至每公里0.2分贝(0.2dB/km)。之前使用磷砷化镓铟雷射的光纤通讯系统常常遭遇到脉波延散(pulse spreading)问题,而科学家则设计出色散迁移光纤(dispersion-shifted fiber)来解决这些问题,这种光纤在传递1550纳米的光波时,色散几乎为零,因其可将雷射光的光谱限制在单一纵模(longitudinal mode)内。这些技术上的突破使得第三代光纤通讯系统的传输速率达到2.5Gb/s,而且中继器的间隔可达到100公里远。
第四代光纤通讯系统引进了光放大器(optical amplifier),进一步减少中继器的需求。另外,波长分波多工器(wavelength-division multiplexing, WDM)技术则大幅增加传输速率。这两项技术的发展让光纤通讯系统的容量以每六个月增加一倍的方式大幅跃进,到了2001年时已经到达10Tb/s的惊人速率,足足是80年代光纤通讯系统的200倍之多。近年来,传输速率已经进一步增加到14Tb/s,每隔160公里才需要一个中继器。
第五代光纤通讯系统发展的重心在于扩展波长分波多工器的波长操作范围。传统的波长范围,也就是一般俗称的“C band”约是1530纳米至1570纳米之间,新一带的无水光纤(dry fiber)低损耗的波段则延伸到1300纳米至1650纳米间。另外一个发展中的技术是引进光固子(optical soliton)的概念,利用光纤的非线性效应,让脉波能够抵抗色散而维持原本的波形。
1990年至2000年间,光纤通讯产业受到因特网泡沫的影响而大幅成长。此外一些新兴的网络应用,如随选视讯(video on demand)使得因特网带宽的成长甚至超过摩尔定律(Moore''''s Law)所预期集成电路芯片中晶体管增加的速率。而自因特网泡沫破灭至2006年为止,光纤通讯产业透过企业整并壮大规模,以及委外生产的方式降低成本来延续生命。
现在的发展前沿就是全光网络了,使光通信完全的代替电信号通讯系统,当然,这还有很长的路要走。 在光纤通讯系统中通常作为光源的半导体元件是发光二极管(light-emitting diode, LED)或是雷射二极管(laser diode)。LED与雷射二极管的主要差异在于前者所发出的光为非同调性(noncoherent),而后者则为同调性(coherent)的光。使用半导体作为光源的好处是体积小、发光效率高、可靠度佳,以及可以将波长最佳化,更重要的是半导体光源可以在高频操作下直接调变,非常适合光纤通讯系统的需求。
LED借着电激发光(electroluminescence)的原理发出非同调性的光,频谱通常分散在30纳米至60纳米间。LED另外一项缺点是发光效率差,通常只有输入功率的1%可以转换成光功率,约是100毫瓦特[micron (μ) Watt (μW)]左右。但是由于LED的成本较低廉,因此常用于低价的应用中。常用于光通讯的LED主要材料是砷化镓或是砷化镓磷(GaAsP),后者的发光波长为1300纳米左右,比砷化镓的810纳米至870纳米更适合用在光纤通讯。由于LED的频谱范围较广,导致色散较为严重,也限制了其传输速率与传输距离的乘积。LED通常用在传输速率10Mb/s至100Mb/s的局域网路(local area network, LAN),传输距离也在数公里之内。目前也有LED内包含了数个量子井(quantum well)的结构,使得LED可以发出不同波长的光,涵盖较宽的频谱,这种LED被广泛应用在区域性的波长分波多工网络中。
半导体雷射的输出功率通常在100微瓦特(μW)左右,而且为同调性质的光源,方向性相对而言较强,通常和单模光纤的耦合效率可达50%。雷射的输出频谱较窄,也有助于增加传输速率以及降低模态色散(model dispersion)。半导体雷射亦可在相当高的操作频率下进行调变,原因是其复合时间(recombination time)非常短。
半导体雷射通常可由输入的电流有无直接调变其开关状态与输出讯号,不过对于某些传输速率非常高或是传输距离很长的应用,雷射光源可能会以连续波(continuous wave)的形式控制,例如使用外接的电吸收光调变器(electroabsorption molator)或是马赫·任德干涉仪(Mach-Zehnder interferometer)对光讯号加以调变。外接的调变元件可以大幅减少雷射的“啁啾脉冲”(chirp pulse)。啁啾脉冲会使得雷射的谱线宽度变宽,使得光纤内的色散变得严重。 过去光纤通讯的距离限制主要根源于讯号在光纤内的衰减以及讯号变形,而解决的方式是利用光电转换的中继器。这种中继器先将光讯号转回电讯号放大后再转换成较强的光讯号传往下一个中继器,然而这样的系统架构无疑较为复杂,不适用于新一代的波长分波多工技术,同时每隔20公里就需要一个中继器,让整个系统的成本也难以降低。
光放大器的目的即是在不用作光电与电光转换下就直接放大光讯号。光放大器的原理是在一段光纤内掺杂(doping)稀土族元素(rare-earth)如铒(erbium),再以短波长雷射激发(pumping)之。如此便能放大光讯号,取代中继器。 构成光接收器的主要元件是光侦测器(photodetector),利用光电效应将入射的光讯号转为电讯号。光侦测器通常是半导体为基础的光二极管(photo diode),例如p-n接面二极管、p-i-n二极管,或是雪崩型二极管(avalanche diode)。另外“金属-半导体-金属”(Metal-Semiconctor-Metal, MSM)光侦测器也因为与电路整合性佳,而被应用在光再生器(regenerator)或是波长分波多工器中。
光接收器电路通常使用转阻放大器(transimpedence amplifier, TIA)以及限幅放大器(limiting amplifier)处理由光侦测器转换出的光电流,转阻放大器和限幅放大器可以将光电流转换成振幅较小的电压讯号,再透过后端的比较器(comparator)电路转换成数位讯号。对于高速光纤通讯系统而言,讯号常常相对地衰减较为严重,为了避免接收器电路输出的数位讯号变形超出规格,通常在接收器电路的后级也会加上时脉恢复电路(clock recovery, CDR)以及锁相回路(phase-lock loop, PLL)将讯号做适度处理再输出。 对于现代的玻璃光纤而言,最严重的问题并非讯号的衰减,而是色散问题,也就是讯号在光纤内传输一段距离后逐渐扩散重叠,使得接收端难以判别讯号的高或低。造成光纤内色散的成因很多。以模态色散为例,讯号的横模(transverse mode)轴速度(axial speed)不一致导致色散,这也限制了多模光纤的应用。在单模光纤中,模态间的色散可以被压抑得很低。
但是在单模光纤中一样有色散问题,通常称为群速色散(group-velocity dispersion),起因是对不同波长的入射光波而言,玻璃的折射率略有不同,而光源所发射的光波不可能没有频谱的分布,这也造成了光波在光纤内部会因为波长的些微差异而有不同的折射行为。另外一种在单模光纤中常见的色散称为极化模态色散(polarization mode dispersion),起因是单模光纤内虽然一次只能容纳一个横模的光波,但是这个横模的光波却可以有两个方向的极化(polarization),而光纤内的任何结构缺陷与变形都可能让这两个极化方向的光波产生不一样的传递速度,这又称为光纤的双折射现象(fiber birefriigence)。这个现象可以透过极化恒持光纤(polarization-maintaining optical fiber)加以抑制。 不过对于短距离与低带宽的通讯应用而言,使用电讯号的传输有下列好处:
较低的建置费用
组装容易
可以利用电力系统传递资讯
因为这些好处,所以在很短的距离传输资讯,例如主机之间、电路板之间,甚至是集成电路芯片之间,通常还是使用电讯号传输。然而目前也有些还在实验阶段的系统已经改采光来传递资讯。
在某些低带宽的场合,光纤通讯仍然有其独特的优势:
能抵抗电磁干扰(EMI),包括核子造成的电磁脉冲。(不过光纤可能会毁于α或β射线)
对电讯号的阻抗极高,所以能在高电压或是地面电位不同的状况下安全工作。
重量较轻,这在飞机中特别重要。
不会产生火花,在某些易燃的环境中显得重要。没有电磁辐射、不易被窃听,对于需要高度安全的系统而言十分重要。
线径小,当绕线的路径被限制时,变得重要。 为了能让不同的光纤通讯设备制造商之间有共通的标准,国际电信联盟(International Telecommunications Union, ITU)制定了数个与光纤通讯相关的标准,包括:
ITU-T G.651, Characteristics of a 50/125 μm multimode graded index optical fibre cable
ITU-T G.652, Characteristics of a single-mode optical fibre cable
其他关于光纤通讯的标准则规定了发射与接收端,或是传输介质的规格,包括了:
10G以太网路(10 Gigabit Ethernet)
光纤分布式数据接口(FDDI)
光纤通道(Fibre channel)
HIPPI
同步数位阶层(Synchronous Digital Hierarchy)
同步光纤网络(Synchronous Optical Networking)
此外,在数位音效的领域中,也有利用光纤传递资讯的规格,那就是由日本东芝(Toshiba)所制定的TOSLINK规格。采用塑胶光纤(plastic optical fiber, POF)作为媒介,系统中包含一个采用红光LED的发射器以及整合了光侦测器与放大器电路的接收器。
4. 光通信的原理是什么
光通信的原理是光反射原理。现代的光纤通信就是运用光反射原理,把光的全反射限制在光纤内部,用光信号取代传统通信方式中的电信号,从而实现信息的传递的。直到今天,信号灯、旗语、望远镜等目视光通信的手段仍在使用,但是这一切还是最原始的光通信,不能算作是真正的光通信。
(4)光纤与光通讯扩展阅读:
我国十分重视光通信器件的研发,通过国家高新技术发展计划安排专题,组织技术攻关,跟踪国际先进技术等措施的实施,极大地推动了光通信器件的研究开发和产业化工作。随着光器件产业逐渐向中国转移,光通信行业基础设施建设进一步加快,中国已成为全球光电元器件的重要生产销售基地。
5. 光通信和光纤通信的概念有什么不同
根据通信发展到现在,可以认为光线通信是光通信的一种。狼烟灯语旗语等可以认为是古老的“光通信”。现在有基于可见光的高速无线上网
6. 光通信和光纤通信的区别
光通信是指技术
光纤通信是指通信介质
二者只是分类角度不同
7. 光纤和光缆通信知识
1960-电射及光纤之发明
1966-华裔科学家“光纤之父”高锟 预言光纤将用于通信。
1970-美国康宁公司成功研制成传输损耗只有20dm/km的光纤。
1977-首次实际安装电话光纤网路
1978-FORT在法国首次安装其生产之光纤电
1979-赵梓森拉制出我国自主研发的第一根实用光纤,被誉为“中国光纤之父”
1990-区域网路及其他短距离传输应用之光纤
2000-到屋边光纤=>到桌边光纤
2005 FTTH(Fiber To The Home)光纤直接到家庭 光纤的分类特征按材质分,有无机光导纤维和高分子光导纤维,目前在工业上大量应用的是前者。无机光导纤维材料又分为单组分和多组分两类。单组分即石英,主要原料为四氯化硅、三氯氧磷和三溴化硼等。其纯度要求铜、铁、钴、镍、锰、铬、钒等过渡金属离子杂质含量低于10ppb。除此之外,OH-离子要求低于10ppb。石英纤维已被广泛使用。多组分的原料较多,主要有二氧化硅、三氧化二硼、硝酸钠、氧化铊等。这种材料尚未普及。高分子光导纤维是以透明聚合物制得的光导纤维,由纤维芯材和包皮鞘材组成。芯材为高纯度高透光性的聚甲基丙烯酸甲酯或聚苯乙烯抽丝制得的纤维,外层为含氟聚合物或有机硅聚合物等。
光导通信的研究和实用化,与光导纤维的低损耗密切相关。光能的损耗可否大大降低,关键在于材料纯度的提高。玻璃材料中的杂质产生的光吸收,造成了最大的光损耗,其中过渡金属离子特别有害。目前,由于玻璃材料的高纯度化,这些杂质对光导纤维的损耗影响已很小。
石英玻璃光导纤维的优点是损耗低,当光波长为1.0~1.7μm(约14μm附近),损耗只有1dB/km,在1.55μm处最低,只有0.2dB/km。高分子光导纤维的光损耗较高,1982年,日本电信电报公司利用氘化甲基丙烯酸甲酯聚合抽丝作芯材,光损耗率降低到20dB/km。但高分子光导纤维的特点是能制大尺寸,大数值孔径的光导纤维,光源耦合效率高,挠曲性好,微弯曲不影响导光能力,配列、粘接容易,便于使用,成本低廉。但光损耗大,只能短距离应用。光损耗在10~100dB/km的光导纤维,可传输几百米。
光纤主要分以下两大类:
1)传输点模数类
传输点模数类分单模光纤(Single Mode Fiber)和多模光纤(Multi Mode Fiber)。单模光纤的纤芯直径很小, 在给定的工作波长上只能以单一模式传输,传输频带宽,传输容量大。多模光纤是在给定的工作波长上,能以多个模式同时传输的光纤。 与单模光纤相比,多模光纤的传输性能较差。
2)折射率分布类
折射率分布类光纤可分为跳变式光纤和渐变式光纤。跳变式光纤纤芯的折射率和保护层的折射率都是一个常数。 在纤芯和保护层的交界面,折射率呈阶梯型变化。渐变式光纤纤芯的折射率随着半径的增加按一定规律减小, 在纤芯与保护层交界处减小为保护层的折射率。纤芯的折射率的变化近似于抛物线。 光纤结构及种类光及其特性:
1.光是一种电磁波
可见光部分波长范围是:390~760nm(毫微米)。大于760nm部分是红外光,小于390nm部分是紫外光。光纤中应用的是:850,1300,1550三种。
2.光的折射,反射和全反射。
因光在不同物质中的传播速度是不同的,所以光从一种物质射向另一种物质时,在两种物质的交界面处会产生折射和反射。而且,折射光的角度会随入射光的角度变化而变化。当入射光的角度达到或超过某一角度时,折射光会消失,入射光全部被反射回来,这就是光的全反射。不同的物质对相同波长光的折射角度是不同的(即不同的物质有不同的光折射率),相同的物质对不同波长光的折射角度也是不同。光纤通讯就是基于以上原理而形成的。
1.光纤结构:
光纤裸纤一般分为三层:中心高折射率玻璃芯(芯径一般为50或62.5μm),中 间为低折射率硅玻璃包层(直径一般为125μm),最外是加强用的树脂涂层。
2.数值孔径:
入射到光纤端面的光并不能全部被光纤所传输,只是在某个角度范围内的入射光才可以。这个角度就称为光纤的数值孔径。光纤的数值孔径大些对于光纤的对接是有利的。不同厂家生产的光纤的数值孔径不同(AT&T CORNING)。
3.光纤的种类:
A.按光在光纤中的传输模式可分为:单摸光纤和多模光纤。
多模光纤:中心玻璃芯较粗(50或62.5μm),可传多种模式的光。但其模间色散较大,这就限制了传输数字信号的频率,而且随距离的增加会更加严重。例如:600MB/KM的光纤在2KM时则只有300MB的带宽了。因此,多模光纤传输的距离就比较近,一般只有几公里。单模光纤:中心玻璃芯较细(芯径一般为9或10μm),只能传一种模式的光。因此,其模间色散很小,适用于远程通讯,但其色度色散起主要作用,这样单模光纤对光源的谱宽和稳定性有较高的要求,即谱宽要窄,稳定性要好。
单模光纤(Single-mode Fiber):一般光纤跳纤用**表示,接头和保护套为蓝色;传输距离较长。
多模光纤(Multi-mode Fiber):一般光纤跳纤用橙色表示,也有的用灰色表示,接头和保护套用米色或者黑色;传输距离较短。
B.按最佳传输频率窗口分:常规型单模光纤和色散位移型单模光纤。
常规型:光纤生产厂家将光纤传输频率最佳化在单一波长的光上,如1300nm。
色散位移型:光纤生产长家将光纤传输频率最佳化在两个波长的光上,如:1300nm和1550nm。
C.按折射率分布情况分:突变型和渐变型光纤。
突变型:光纤中心芯到玻璃包层的折射率是突变的。其成本低,模间色散高。适用于短途低速通讯,如:工控。但单模光纤由于模间色散很小,所以单模光纤都采用突变型。
渐变型光纤:光纤中心芯到玻璃包层的折射率是逐渐变小,可使高模光按正弦形式传播,这能减少模间色散,提高光纤带宽,增加传输距离,但成本较高,现在的多模光纤多为渐变型光纤。
4.常用光纤规格:
单模:8/125μm,9/125μm,10/125μm
多模:50/125μm,欧洲标准
62.5/125μm,美国标准
工业,医疗和低速网络:100/140μm,200/230μm
塑料:98/1000μm,用于汽车控制 光纤的衰减造成光纤衰减的主要因素有:本征,弯曲,挤压,杂质,不均匀和对接等。
本征:是光纤的固有损耗,包括:瑞利散射,固有吸收等。
弯曲:光纤弯曲时部分光纤内的光会因散射而损失掉,造成的损耗。
挤压:光纤受到挤压时产生微小的弯曲而造成的损耗。
杂质:光纤内杂质吸收和散射在光纤中传播的光,造成的损失。
不均匀:光纤材料的折射率不均匀造成的损耗。
对接:光纤对接时产生的损耗,如:不同轴(单模光纤同轴度要求小于0.8μm),端面与轴心不垂直,端面不平,对接心径不匹配和熔接质量差等。 光纤传输优点直到1960年,美国科学家Maiman发明了世界上第一台激光器后,为光通讯提供了良好的光源。随后二十多年,人们对光传输介质进行了攻关,终于制成了低损耗光纤,从而奠定了光通讯的基石。从此,光通讯进入了飞速发展的阶段。
光纤传输有许多突出的优点:
1。频带宽
频带的宽窄代表传输容量的大小。载波的频率越高,可以传输信号的频带宽度就越大。在VHF频段,载波频率为48.5MHz~300Mhz。带宽约250MHz,只能传输27套电视和几十套调频广播。可见光的频率达100000GHz,比VHF频段高出一百多万倍。尽管由于光纤对不同频率的光有不同的损耗,使频带宽度受到影响,但在最低损耗区的频带宽度也可达30000GHz。目前单个光源的带宽只占了其中很小的一部分(多模光纤的频带约几百兆赫,好的单模光纤可达10GHz以上),采用先进的相干光通信可以在30000GHz范围内安排2000个光载波,进行波分复用,可以容纳上百万个频道。
2.损耗低
在同轴电缆组成的系统中,最好的电缆在传输800MHz信号时,每公里的损耗都在40dB以上。相比之下,光导纤维的损耗则要小得多,传输1、31um的光,每公里损耗在0.35dB以下若传输1.55um的光,每公里损耗更小,可达0.2dB以下。这就比同轴电缆的功率损耗要小一亿倍,使其能传输的距离要远得多。此外,光纤传输损耗还有两个特点,一是在全部有线电视频道内具有相同的损耗,不需要像电缆干线那样必须引人均衡器进行均衡;二是其损耗几乎不随温度而变,不用担心因环境温度变化而造成干线电平的波动。
3.重量轻
因为光纤非常细,单模光纤芯线直径一般为4um~10um,外径也只有125um,加上防水层、加强筋、护套等,用4~48根光纤组成的光缆直径还不到13mm,比标准同轴电缆的直径47mm要小得多,加上光纤是玻璃纤维,比重小,使它具有直径小、重量轻的特点,安装十分方便。
4.抗干扰能力强
因为光纤的基本成分是石英,只传光,不导电,不受电磁场的作用,在其中传输的光信号不受电磁场的影响,故光纤传输对电磁干扰、工业干扰有很强的抵御能力。也正因为如此,在光纤中传输的信号不易被**,因而利于保密。
5.保真度高
因为光纤传输一般不需要中继放大,不会因为放大引人新的非线性失真。只要激光器的线性好,就可高保真地传输电视信号。实际测试表明,好的调幅光纤系统的载波组合三次差拍比C/CTB在70dB以上,交调指标cM也在60dB以上,远高于一般电缆干线系统的非线性失真指标。
6.工作性能可靠
我们知道,一个系统的可靠性与组成该系统的设备数量有关。设备越多,发生故障的机会越大。因为光纤系统包含的设备数量少(不像电缆系统那样需要几十个放大器),可靠性自然也就高,加上光纤设备的寿命都很长,无故障工作时间达50万~75万小时,其中寿命最短的是光发射机中的激光器,最低寿命也在10万小时以上。故一个设计良好、正确安装调试的光纤系统的工作性能是非常可靠的。 光缆就是平常说的大对数电缆,放水、防火,一般用在电话上。大对数线缆一般分为3类大对数和5类大对数,又分为:5对10对20对25对30对50对100对200对300对
一般来说大对数线缆在弱电工程中用做 语音主干 比较常用